Глава 2. Экспериментально - психологическое изучение формирования. 2.1.Изучение понятия о сохранении объема, длины, количества, площади у детей. Психологическое обоснование различных стратегий обучения. Сохранение. Щедровицкий П.Г. пишет, что исключительно важное место во всякой деятельности людей занимает мышление. При обучении детей оно рассматривается в двух планах: во-первых, как то что должно быть сформировано у детей посредством и в результате обучения; во-вторых, как основная способность обеспечивающая быстрое и эффективное учение, усвоение того содержания, которое задается на разных этапах обучения. Не удивительно, что значительная часть всех психологических и педагогических исследований посвящена именно мышлению. Но в поведении людей мышление никогда не представлено в чистом виде. Оно тем больше сплавлено с другими компонентами поведения и замаскировано ими, чем с меньшим возрастом мы имеем дело. Щедровицкий далее продолжает: овладение знаниями и способами деятельности в том числе мыслительными операциями происходит только в определенной системе: любые знания и мыслительные операции могут усваиваться лишь после и на основе других, а сами в свою очередь образуют условия и предпосылки овладения какими-то иными, еще более сложными знаниями и операциями. Получается, что на продолжении всего обучения знаниями и мыслительные операции образуют как бы единую систему, в которой все элементы взаимосвязаны и зависят друг от друга, каждый предшествующий слой определяет характер последующего и все они в целом зависят от того, какие требования предъявляем мы к итогу всего этого обучения. Из этого принципа вытекает, что дошкольное воспитание и обучение нельзя рассматривать изолированно, а должно рассматриваться как подготовительный этап к воспитанию и обучению в младшем возрасте. Обухова А.Ф. в своей книге «Этапы развития детского мышления» пишет, что теоретический анализ открывает в двух типах сохранения количества и «сохранения целого при разделении на его части» - принципиальное значение очень важное для понимания развития мышления ребенка. В одном случае речь идет о количественной характеристике зримых, вещественных свойств предмета, а в другом о понятийной характеристике некоторой совокупности. В связи с этим можно предположить, что дети, понимающие сохранение количества вещества, справляются с выполнением задания на включение классов, если их вооружить соответствующей меркой. Однако это должна быть особая «понятийная мера» материализованная в виде схематичного рисунка, изображающая общие свойства класса и отличительные признаки подклассов. Результаты эксперимента Обуховой позволяют считать, что при условии достаточно полного управления процессом усвоение у детей старшего дошкольного возраста уже можно начать формирование элементов собственного научного подхода к явлениям действительности. В теории формирования умственных действий и понятия, созданной П.Л.Гальпериным, намечены условия, обеспечивающие формирование действий и умственных процессов заранее заданными высокими показателями. Эти условия стали предметом специального анализа концепций Гальперина о трех типах ориентировки и соответствующих им трех типах учения. На I типе ориентировки ученик стихийно находит систему ориентиров, необходимую для правильного выполнения действия, чаще обращая внимание на внешние, не всегда существенные стороны действий, его образцы и продукты обучения в этом случае происходит путем проб и ошибок и поэтому в значительной степени зависит от уровня интеллектуального развития ребенка. При II типе ориентировки ребенку дают все указания, необходимые для правильного выполнения конкретного задания. Пробы и ошибки исчезают, однако развитие при этом обучении не происходит – имеется лишь накопление знаний, отвечающих строгим требованиям. При III типе обучения ребенка учат методу анализа объектов, позволяющему самостоятельно устанавливать системы ориентиров, необходимую для правильного выполнения любого задания из изучаемой части. Организация обучения по III типу ведет к формированию операторных схем ориентировки субъекта в действительности, что составляет главное условие процесса развития. Метод Гальперина был использован Обуховой для формирования у детей дошкольного возраста представления о сохранении количества. Основные принципы обучения в исследовании Обуховой состояли в том, чтобы вооружить ребенка объективно общественным средством оценки и анализа вещей – мерой; сделать это средство необходимым для ребенка и потом учить детей выделению основных единиц и их существенных отношений в решении задач на количественное сравнение величин на специально созданных для этой цели задачах. Для того чтобы обучать детей опосредованному сравнению величин, потребовалось разработать Обуховой таких задач, которые нельзя решить никакими другими способами, кроме использования меры и вспомогательных средств. Формирование опосредованной оценки было разделено на три периода. I период: сначала сформировалось умение пользоваться для этой цели метками. II период обучения: сформировалось умение сравнивать два предмета с помощью третьего. III период: формировали умение пользоваться мерой в явном и четком виде. Обучение сохранению на основе стратегии названной Брэнердом перцептивной. Такое обучение было осуществлено Р.Гельмак, которое формировала у несохраняющих детей 5-6 лет способность сохранять дискретное количество и длину. Стратегия была разработана на основе теории дискриминантного обучения, согласно которой ребенок должен научиться обращать внимание на релевантные и игнорировать иррелевантные признаки ситуации. В тренировочных пробах несохраняющим детям предъявлялись тирады стимулов. В тирадах два стимула всегда были тождественны числу точек в рядах или по длине линий. Третий стимул в тирадах отличался от двух других по значению соответствующего параметра. В рядах с точками детей просили показать 2 ряда, в которых количество точек одинаково или, наоборот, различно. Аналогично давалось задание применительно к тирадам с линиями. В одних предъявленьях детей просили выбрать те 2 палочки, длина которых одинакова, а в других те две, длина которых различна. Так, ряды с одинаковым числом точек имели разную длину и плотность, а ряды с разным числом были наоборот, одинаковы по длине или плотности. Применительно к длине одинаковые линии располагались так, что их концы не совпадали ни с одной стороны либо, если совпадали только с одной, то сильно расходились друг с другом. В то же время у линий разной длины концы всегда совпадали с одной стороны и мало расходились с другой. Таким образом дети должны были отвлекаться от резко бросающихся в глаза различий, а отвечая на вопросы о различии, наоборот, должны были отвлекаться от резко бросающихся в глаза сходства объектов. Дети тренировались в ответах на вопросы тождестве и различии объектов. После каждого ответа сообщалось о его правильности или ошибочности, и к концу тренировки дети достигали 100%-ного уровня правильных ответов, начав с 60%-ного уровня в первых предъявленьях. Это значит, что они научились основывать свои ответы исключительно на тождестве и различии объектов. Примененная процедура оказалась высоко эффективной для приобретения способности к сохранению. Анализ материала и процедура тренировки, разработанной Гельман, не оставляет сомнений в том, что у детей благодаря многократному решению задач должно было происходить когнитивное отделение. Во-первых: параметра количества от параметра длины и плотности. Во-вторых: параметра длины от параметра взаимного расположения концов линий. Весь процесс тренировки был организован так, что ребенок должен был научиться основывать свои ответы на каких-то вполне определенных признаках объектов, когда в вопросах взрослого речь шла об их количестве, и на столь же определенных, но других признаках, когда его спрашивали о длине. Обучение сохранению при помощи вербальных правил, названное Ч.Брейнердом когнитивной стратегии. Первая разновидность была реализована Филдом в работе с несохроняющими умственно отсталыми детьми 8-12 лет и дошкольниками 3-5 лет. Тренировалось сохранение дискретного количества и длины. Тренировка по сути очень близка процедуре Гельман. Филд предъявил детям аналогично использованные в работе Гельман «конфликтные триады» стимулов, и просил показать какие два ряда объектов содержат одинаковое число элементов или имеют одинаковую длину. В качестве объектов использовались монеты, шашки, леденцы, ленты, электрические провода, наборы спичек. Отличие процедуры Филда от процедуры Гельман состояло в том, что после каждого ответа наряду с оценкой его правильности или не правильности экспериментатор на глазах ребенка трансформировал какой-либо из объектов триады и на примере этой трансформации словесно формулировал правила идентичности, обратимости и компенсации. Например, экспериментатор сгибал одну из лент и говорил при этом, что лента осталось той же самой (правило идентичности). Если он сначала сгибал, а затем разгибал ленту, то говорим ребенку: «Мы разгибаем ленту и ты видишь, что она той же длины, то и была» (правило обратимости). Если экспериментатор передвигал одну из палочек, то он мог сказать ребенку следующее: «Эта палочка теперь больше – выступает с одного конца; но посмотри, с другого конца больше выступает больше выступает другая палочка, так что изменения уравновешивают друг друга» (правило компенсации). Аналогичным образом вводились правила применительно к количеству леденцов, шашек, монет. Например, по-разному раскладывая монеты какого-либо ряда, экспериментатор говорил: «Не имеет значение, как их положить; ведь количество монет остается тем же самым». К концу тренировки все дети стали гораздо лучше выбирать объекты, одинаковые по количеству элементов и длине, а в посттестах показали значительное улучшение способности сохранения. Если посмотреть на эксперименты Филда с точки зрения развития когнитивной дифференциации разных свойств объектов, то не трудно увидеть, что весь процесс тренировки был направлен на тонкую дифференциацию и что словесные обозначения свойств, которые постоянно слышал ребенок играл при этом существенную роль. Стратегия обучения сохранению в опытах Э.Сонстрем. Эго идея состояла в том, что чисто физическим операциям изменения формы пластилиновых шариков, «добавить методику словесного обозначения» и тем самым «сделать более ярким компенсирующиеся признаки». Так возник общий план эксперимента: изменяя форму шарика, отмечать словесно, что при этом меняется его длина и толщина, и, что если шарик выигрывает в длине, то он одновременно теряет в толщине. В обучающем эксперименте дети выполнили четыре пробы с двумя равными по количеству шариками пластилина. Каждая проба состояла из предъявления двух идентичных шариков, преобразования и восстановления формы сначала одного, а затем второго шарика. Каждый раз при предъявлении идентичных шариков, при преобразовании и восстановлении формы каждого из них ребенка просили высказать суждение о равенстве или неравенстве количества пластилина в шариках. Так, например, после того как экспериментатор или сам ребенок превращал один шарик пластилина в карандаш, его спрашивали, какой из кусочков длиннее и какой толще. Затем ребенка просили сделать карандаш таким же толстым как шарик, или сделать толстый шарик таким же длинным как карандаш. Если вспомнить, до и после каждой дифференциации детей спрашивали о количестве пластилина в объектах, то ясно, что словесные обозначения которые слышали и самостоятельно употребили дети, представляли собой обозначения трех свойств объектов: длины, толщины и количества предметов. Таким образом, условия тренировки создали благоприятные возможности для связывания слов длина, толщина, количество с их принятыми значениями и для роста когнитивной отделяемости этих трех свойств. Обучение сохранению путем вопросов – ответов путем наблюдения за правильными ответами других. При применении этих двух стратегий выделенных Брейнердом детям не дают каких-либо специально подобранных тренировочных задач. Обучение происходит благодаря повторному решению самих задач на сохранение. Стратегия вопросов-ответов состоит в том, что после каждого ответа ребенку не только говорят, правильно или нет, он ответил, но и сообщают развернутую формулировку правильного ответа. Эта стратегия была применена в исследованиях Брейнерда для тренировки сохранения длины у детей 4,5 – 6 лет и оказалась эффективной. После каждого ответа ребенку говорили: «не правильно ты ответил», правильный ответ состоит в том, что эти две ленты одинаковой длины. Он высказывает предположения, что повторяемая несколько раз формулировка правильных ответов ведет к тому, что дети лучше извлекают из кратковременной памяти адекватные вопросу признаки стимул-объектов. 2. Формирующий эксперимент. В ходе обучающего эксперимента детям была предложена серия заданий, которая представляет из себя задачи на сохранение в форме дидактической игры. I период обучения. Эксперимент проводился фронтально. Каждому было предложено две карточки. (на одной изображены 10 кранов, а на другой 11 звезд) нужно определить каких фигурок больше. Ребенок не мог расположить фигурки одна к другой, так как фигурки были наклеены. Поэтому дети затруднились с ответом. Тогда и предлагали выполнить задание с использование меток, с которыми они могли действовать свободно. В качестве меток давали квадратики и палочки и с детской мозаики. Дети раскладывали по одной палочке на каждый кран и по одному квадрату на каждую звезду. Затем знакомили детей с рабочей картой, на которой были изображены два квадратных окошечка и длинный ряд двойных стрелок. Дети в верхнее окошечко выкладывали палочки, снятые с кранов, а в нижнее – квадратики, снятые со звезд. Составив по способу взаимно-однозначного соотнесения дети правильно отвечали на поставленный вопрос: Вопросы: Что на этой карточке изображено? Чего здесь больше кранов или звезд? Как это можно узнать? Что нужно сделать, чтобы это узнать? Сколько палочек? Сколько кранов? Как можно о них сказать? Звездочек и квадратиков одинаково? Сколько звездочек? Сколько кранов? Чего у нас больше звездочек или кранов? Таким образом дети обучались правильному сравнению количества предметов, сравнивать которые непосредственно «на глаз» было нельзя. Во II периоде обучения формировалось умение сравнивать два предмета с помощью третьего. Хорошо известно, каким придирчивым бывает ребенок при непосредственном сравнении неправильных величин. На этот раз предлагала детям задание в котором непосредственное сравнение фигурок по размеру было невозможно. Для того, чтобы определить из двух наклеенных фигурок (2 ключа) большую, необходимо было использовать третий предмет – полоску цветной бумаги. Я показываю ребенку как выполняется задание. Из этой полоски испытуемый вырезает мерку, в точности соответствующую длине одной из фигурок. С помощью этой полоски ребенок узнает длину ключа (прием наложения). Вопросы: Определи, какой ключ больше: красный или желтый? Как это можно проверить? Что для этого нужно сделать? Что нужно сделать дальше? Эксперимент проводился индивидуально. Т.о. дети в возрасте 6-7 лет правильно определяют длину двух предметов с помощью третьего, после показа и объяснения экспериментатора. III период обучения проводился только по доминирующему признаку, так как сначала важно было научить ребенка технике, опосредованной оценке. Этот третий элемент выделяет соответствующий параметр и указывает его величину. Однако, он ограничен тем, что сам выступает как самостоятельный конкретный предмет, а не как орудие труда превращающее измеряемую величину в множество. В следствии этой ограниченности сравнение через третий элемент выступает как частный и нехарактерный случай измерения. Поэтому в следующем периоде эксперимента мы закрепили у детей умение пользоваться мерой. Ребенок должен был сравнивать длину 2 линий в виде лестниц или дорог, измеряя их с помощью маленькой полоски и отмечая метками. Ребенку предлагалось карточка с изображением двух ломаных линий. В ходе эксперимента были заданы следующий вопросы: Как узнать какая лестница длиннее? У нас есть маленькие мерочки, от они. Мы ими будем измерять эти лестницы. Будем делать так. Сначала будем измерять желтую лестницу. Положи на нее мерку и отложи метку напротив верхней стрелки на нашей рабочей карте. Теперь положи такую же мерочку рядом с первой на желтой лестнице и тоже отметь это на карточке с помощью метки. Так делай все время до тех пор, пока не кончишь измерять лестницу. Потом так же измерь другую лестницу, синюю. Верхние метки показывают, сколько раз метка мерила синюю лестницу. Какую лестницу мерили больше мерок? Сколько мерок в синей лестнице? Сколько мерок в желтой лестнице? В какой лесенке больше мерок? Почему синяя больше? Таким образом, в ходе эксперимента у детей в возрасте 6-7 лет формируется понятие о сохранении длины и дети обучаются сравнивать длины двух параметров, которые нельзя непосредственно наложить друг на друга. IV период обучения. Задания были направлены на определение объема с помощью мерок. В ходе эксперимента ребенок измерил маленьким стаканчиком пшено, которое находилось в баночках разного размера. Эксперимент проводился по подгруппам. Ход эксперимента: в двух баночках разной формы насыпано пшено, рядом на столе находятся различные предметы (квадраты, палочки, линейка, стаканчик, коробочка и т.д.). Вопросы: Скажи, в какой баночке пшена больше? Что нужно сделать, чтобы это узнать? Что может быть мерой для пшена? Пшено можно палочкой измерить? Можно ли измерить квадратиком? Сколько мерок пшена в этой баночке? Что у нас было меркой? Как вы узнали, что пшена поровну? Сколько мерок в этой баночке? Таким образом, в ходе эксперимента дети на первом этапе этого упражнения (на вопрос: «чем можно измерить пшено в банках?»), почти все пытались измерить пшено приемом приложения с помощью палочки, или квадратика, используя прошлый опыт. Ошибки дети исправили только с помощью экспериментатора. V период обучения: сохранение дискретных количеств. Вариант I Ход эксперимента: На столе два ряда белых и черных шашек, расположенных параллельно. Вопрос: каких шашек больше, белых или черных? (шашек поровну, по 9 шт). Затем ребенок по просьбе педагога ставит все белые шашки друг на друга, столбиком, а черные остаются на том же месте. Вопрос: Каких шашек больше сайчас? Один из ответов детей, Ксюши Б.: «У нас шашек поровну, потому что мы шашки не отбавляли и не прибавляли. Можно и черные поставить столбиком и тогда будет видно, что их одинаково». Вариант II Ход эксперимента: Перед ребенком стоят: пластмассовая баночка с горохом и две одинаковых прозрачных стаканчика. Предлагаю ребенку взять в каждую руку по горошине и одновременно опускать их в прозрачные стаканчики. После того как часть стаканчиков заполнится горохом дети прекращают работу. Вопрос: Скажите, в каком стаканчике горошин больше? Никита Л.: «В этом стаканчике и в этом горошин одинаково, потому что я брал в левую и правую руку по 1 горошине и бросал в стаканчик, вот и получилось одинаково». Далее пересыпаю горошины из одного стаканчика в другой, узкий и высокий. Вопрос: Где горошин больше? Никита Л.: «В этом стакане и в этом горошин одинаково, потому что не одну горошину не убирали и не прибавляли». Вопрос: А почему здесь так высоко горошинки поднялись? Никита Л.: «Он очень узенький и высокий, а этот стаканчик низкий и широкий, а горошин одинаково, потому что не брали горошины и не прибавляли». Таким образом, у детей данной группы сформировано понятие о сохранении дискретных количеств. IV период обучения: сохранение длины. Ход эксперимента: Перед ребенком два одинаковых по длине кирпичика, расположенных точно один под другим. Вопрос: Как узнать какой кирпичик длиннее? Ответ Ксюши Б.: «Нужно измерить их (измеряет первый кирпичек). Мерочка мерила его 8 раз. Этот кирпичик будет мерить тоже 8 раз, потому что они одинаковые». Затем сдвигаю в сторону один из кирпичиков. Вопрос: Какой кирпичик длиннее? Ксюша Б.: «Этот и этот кирпичик одинаковые, потому что мерка показывала, что этот кирпичик и этот одинаковые». Таким образом, в ходе эксперимента выяснилось,. Что дети усвоили понятие о сохранении длины предметов. VII период обучения: сохранение расстояния. Ход эксперимента: На некотором расстоянии друг от друга стоят два зайчика. Вопрос: Как ты думаешь, далеко стоят зайцы друг от друга? Можно ли это расстояние измерить? Женя Л.: (Измеряет расстояние меркой, палочкой). «Между зайцами девять мерок». Однажды между ними выросло дерево (ставлю дерево между зайцами). Вопрос: Как ты думаешь, зайцы стоят так же далеко друг от друга? Женя Л.: «Да, так же. Я мерил и оказалось девять мерок и сейчас девять мерок. Мы не отодвигали и не передвигали зайчиков». Таким образом, с поставленной задачей все дети, кроме Кати Б., справились, так усвоили понятие о сохранении расстояния. VIII период обучения: сохранение эквивалентности двух рядов. Ход эксперимента: На столе лежат тарелочки и блюдца в количестве восьми штук. Предлагаем ребенку положить на каждую тарелочку ложечку. Вопрос: Как ты считаешь, ложек и тарелок поровну? Вероника Э.: «У нас все поровну, тарелок и ложек» (кладет каждую ложечку на тарелочку). Признает эквивалентность двух рядов. Затем сдвигаю ложки ближе дуг к другу и спрашиваю, чего больше ложек или тарелок? Катя Б.(любимая наша ученица): «Все поровну, потому что мы не отбавили и не прибавили. Как было, так и осталось.» IX период обучения: сохранение неравенства количества вещества. Ход эксперимента: На столе два стеклянных стакана одинаковой формы, в которых налито неодинаковое количество воды. Предлагаем одному из детей выбрать себе любой из стаканчиков (второй берем себе). Вопрос: У кого больше воды, у тебя или у меня? Олег А.: «У меня». Переливая воду из своего стакана в узкий стакан. Уровень воды становится выше, чем в стакане испытуемого, хотя объем воды меньше. Вопрос: Сейчас у кого воды больше? Олег А.: «У меня. Ваш стаканчик тоненький и большой и вода поднялась. Воды больше у меня». Вопрос: Почему ты так думаешь, что у тебя больше воды? Олег А.: «Надо вашу воду перелить, где она была и тогда будет видно, что у меня воды больше». X период обучения: сохранение целого при разделение его на части. Ход эксперимента: На столе стоят чашки, в которых налита вода, а некоторые чашки пустые. Вопрос: Скажи сколько всего чашек? Надя П.: «Всего чашек шесть». Чего больше: всего чашек или чашек с водой? Надя П.: «Больше чашек с водой». Еще раз послушаем, о чем мы тебя спрашиваем. Чего больше всех чашек или чашек с водой? Давай будем ставить метки на нашей рабочей карте. Поставь на первый ряд карты столько меток, сколько всех чашек. (Надя выполняет задание) На второй ряд карты поставь столько меток, сколько чашек с водой. Где больше меток – верху или внизу? Верхние метки, о чем тебе говорят? Надя П.: «О чашках, о всех чашках». А нижней метке, что напоминает? Надя П.: «Чашки с водой». Чего же больше? Надя П.: «Всех чашек, а чашек с водой меньше». Почему ты так думаешь? Надя П.: «Всех чашек шесть, а чашек с водой четыре». Почему же всех чашек больше? Надя П.: «Потому что половина чашек с водой, а половина без воды». Таким образом, на этом периоде обучения дети столкнулись с некоторыми трудностями и некоторые дети (на вопрос: чего больше: всего чашек или чашек с водой?) давали неправильный ответ. Ошибка их была неправильно лишь после того как были отложены метки на рабочей карте. Не справились с заданием четыре человека: Леша Г., Илья А., Катя Б., Надя П. 3.Контрольный эксперимент. Контрольный эксперимент проводился в подготовительной группе (январь-март 1998 года). Серия 1 (с водой в сосудах) В ходе эксперимента менялись только сосуды А, А1 и Б и цвет воды в сосудах (голубой). 2)Результаты контрольного эксперимента экспериментальной группы высокие по сравнению с результатами контрольной группы. Это говорит о том, что необходимо детям дошкольного возраста планомерное, целенаправленное и поэтапное обучение развитию представлений о сохранении свойств объектов. Это подтверждается результатами проведенного нами контрольного эксперимента Заключение В своих исследованиях мы опирались на положение Л.С.Выгодского о ведущей роли обучения в процессе умственного развития и пытались доказать, что в дошкольном возрасте возможно формирования понятия о сохранении. Согласно Ж.Пиаже, развитие научных понятий происходит спонтанно и начинается в возрасте 7-8 лет. Однако, мы считаем, что проблема не в возрасте самом по себе и не в сроках. Срок можно изменить, если изменить развивающую среду и методику обучения ребенка. К такому выводу мы пришли на основании результатов экспериментальной работы. Констатирующий эксперимент показан (см. таблицы №11 и №12), что у детей 5-6 лет понимание принципа сохранения количества отсутствует, лишь в редких случаях отдельные дети дают правильные ответы, которые, возможно, являются случайными. Это подтверждает данные Жана Пиаже. Результаты проведенного нами формирующего и контрольного экспериментов говорят о том, что специально организованное обучение приводит к разделению внешней картины вещей на ее видимость и скрытые за этой видимостью существенные отношения. Такое разделения имеет важное значение для формирования внутреннего плана мышления и развития способности логически мыслить. У детей экспериментальной группы успешнее идут формирование понятия о сохранении объема, количества, длины, площади, чем у детей контрольной группы при традиционном обучении (см. таблицы №23 и №24). Без специального обучения у большинства детей и к семи годам не сформировано понятие о сохранении, что может сказываться на успешности школьного обучения. Результаты проведенного эксперимента позволяют считать, что у детей старшего дошкольного возраста уже можно начинать формирование собственно научного подхода к явлениям действительности. Важно, что обучение принципу сохранения должно проходить в игровой форме, опираться на познавательные интересы детей, на их стремление к экспериментированию и желание потрогать все своими руками (что они и делают у опытах).
|